Aufgaben

- Handelt es sich bei den folgenden Beispielen eher um gleichförmige oder um ungleichförmige Bewegungen: PKW auf der Autobahn, LKW beim Anfahren an der Ampel, Schiff auf hoher See, Flugzeug bei der Landung, Skater in der Halfpipe?
- Finde Beispiele für gleichförmige und für ungleichförmige Bewegungen bei verschiedenen Sportarten.
- Wie müssten die Wegmarkierungen bei der Lok im Zentralen Versuch aussehen, wenn sie anfährt oder wenn sie abbremst? Wie sehen sie bei einer niedrigen oder bei einer hohen Geschwindigkeit aus?
- Eine Schülerin braucht für den 1,2 km langen Schulweg zu Fuß $\frac{1}{4}$ Stunde, mit dem Fahrrad beträgt ihre Bestzeit 3 min 10 s.

- a) Berechne jeweils ihre Durchschnittsgeschwindigkeit in $\frac{m}{s}$ und in $\frac{km}{h}$.
- b) Zeichne beide Bewegungen in dasselbe Zeit-Weg-Diagramm. Woran erkennst du die Bewegung mit der höheren Geschwindigkeit?
- Wandle jeweils um: **a)** in $\frac{m}{s}$: 1 $\frac{km}{h}$; 20 $\frac{cm}{s}$; 10 $\frac{mm}{min}$; **b)** in $\frac{km}{h}$: 50 $\frac{m}{s}$; 3 $\frac{km}{s}$; 150 $\frac{m}{min}$.
- Eine Klasse macht eine Wanderung. Zuerst geht es zwei Stunden lang in gleichmäßigem Tempo durch den Wald. Nach 9 km gibt es eine Pause von 15 min. Für den anschließenden 2 km langen Aufstieg braucht die Gruppe eine Stunde.
- a) Fertige ein Zeit-Weg-Diagramm der Wanderung an.
- b) Berechne die Geschwindigkeit für jeden Abschnitt.
- c) Berechne die Durchschnittsgeschwindigkeit.

Aufgaben

- Ein PKW bewegt sich 10 s lang mit 22 $\frac{m}{s}$.
- a) Stelle für diese Bewegung eine Tabelle auf, in der du 10 s lang in Sekundenschritten die zurückgelegten Wege angibst.
- b) Zeichne das Weg-Zeit-Diagramm.
- c) Entnimm dem Diagramm den Weg, den der PKW in 5,5 s zurückgelegt hat, sowie die Zeit, die der PKW für 100 m benötigt.
- d) Gib die Geschwindigkeit des PKW in km an.
- Löse die folgende Aufgabe mithilfe eines Weg-Zeit-Diagramms: Körper ① benötigt für 100 m eine Zeit von 10 s; Körper ② startet 3 s später und benötigt dann für 100 m eine Zeit von 5 s. Wann und nach welcher Strecke treffen sie sich?
- Bei der Bewegung eines Körpers wurden folgende Messwerte aufgenommen.

Zeit t	0	1 s	2 s	3 s	4 s
Weg s	0 m	1,5 m	6 m	13,5 m	24 m

- a) Erstelle das Weg-Zeit-Diagramm.
- b) Liegt eine gleichförmige Bewegung vor? Begründe.
- c) Berechne die Durchschnittsgeschwindigkeit nach 1 s; 2 s; 3 s und 4 s.
- Zeichne das Zeit-Weg-Diagramm für die Bewegung einer Straßenbahn:
- 15 s lang beschleunigt sie und legt dabei einen Weg von 150 m zurück.
- ② Dann fährt sie 45 s lang mit gleichbleibender Geschwindigkeit 600 m weit.
- ③ Dann bremst sie 12 s lang in den Stand ab; der Bremsweg beträgt 120 m.